Definition 1. <u>Absolute Value</u> Geometrically, the <u>absolute value</u> of a real number a is the distance from the origin on the number line to the point with coordinate a. The definition of absolute value is

|a| = a if $a \ge 0$ and |a| = -a if a < 0.

For example, |-5| = -(-5) = 5 and |5| = 5. This means that the absolute value of any real number is greater or equal to zero.

Definition 2. Rules for Solving Absolute Value Equations:

If a > 0 and u is an algebraic expression, then

|u| = a is equivalent to u = a or u = -a

|u| = -a has no solution.

Note that if |u| = 0, then u = 0 is the only solution.

Example 1. Solve: |2x - 3| - 5 = 8Solution:

> |2x-3|-5=8|2x-3|=13 add 5 to both sides and simplify

Then applying the rules, either 2x - 3 = 13 or 2x - 3 = -13. So,

2x - 3 = 13	or	2x - 3 = -13
2x = 16	or	2x = -10
x = 8	or	x = -5

After checking the answers in the original equation, then the solution set is $\{-5, 8\}$.

Example 2. Solve: |x - 1| = |x + 5|Solution: To solve |x - 1| = |x + 5|, we need to solve x - 1 = x + 5 or x - 1 = -(x + 5). So,

> x-1 = x+5 or x-1 = -(x+5) $-1 = 5 \ False$ or x = -2

Hence, the solution set is $\{-2\}$.

Definition 3. Rules for Solving Absolute Value Inequalities:

If a > 0 and u is an algebraic expression, then

u < a	$is \ equivalent \ to$	-a < u < a.
$ u \le a$	is equivalent to	$-a \le u \le a.$
u > a	is equivalent to	u < -a or u > a.
$ u \ge a$	is equivalent to	$u \leq -a \text{ or } u \geq a.$

Example 3. Solve: $|4x - 1| \le 9$ Solution: $|4x - 1| \le 9$ is equivalent to $-9 \le 4x - 1 \le 9$. So,

$$-9 \le 4x - 1 \le 9$$

$$1 - 9 \le 4x - 1 + 1 \le 9 + 1$$

$$-8 \le 4x \le 10$$

$$\frac{-8}{4} \le \frac{4x}{4} \le \frac{10}{4}$$

$$-2 \le x \le \frac{5}{2}$$

So the solution set is $[-2, \frac{5}{2}]$.

Example 4. Solve: |2x - 8| > 4Solution: |2x - 8| > 8 is equivalent to 2x - 8 < -4 or 2x - 8 > 4. So,

$$\begin{array}{rrrrr} 2x-8 < -4 & or & 2x-8 > 4 \\ 2x-8+8 < -4+8 & or & 2x-8+8 > 4+8 \\ & 2x < 4 & or & 2x > 12 \\ & x < 2 & or & x > 6 \end{array}$$

Hence, the solution set is $(-\infty, 2) \cup (6, \infty)$. Recall that $(or = \cup)$ and $(and = \cap)$.

Remark 1. The inequality $|3x - 2| \leq -5$ has no solution because the absolute value is always nonnegative.

The inequality |5x + 3| > -2 is true for all real numbers because the absolute value is always nonnegative. Hence the solution set of such an inequality is $(-\infty, \infty)$.